
www.manaraa.com

University of South Carolina
Scholar Commons

Theses and Dissertations

1-1-2013

Geochemical Source Components in Seafloor
Lavas in the Aleutian Back-Arc
Max Thomas Siegrist
University of South Carolina - Columbia

Follow this and additional works at: https://scholarcommons.sc.edu/etd

Part of the Geology Commons, and the Social and Behavioral Sciences Commons

This Open Access Thesis is brought to you by Scholar Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized
administrator of Scholar Commons. For more information, please contact dillarda@mailbox.sc.edu.

Recommended Citation
Siegrist, M. T.(2013). Geochemical Source Components in Seafloor Lavas in the Aleutian Back-Arc. (Master's thesis). Retrieved from
https://scholarcommons.sc.edu/etd/2483

https://scholarcommons.sc.edu?utm_source=scholarcommons.sc.edu%2Fetd%2F2483&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.sc.edu/etd?utm_source=scholarcommons.sc.edu%2Fetd%2F2483&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.sc.edu/etd?utm_source=scholarcommons.sc.edu%2Fetd%2F2483&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/156?utm_source=scholarcommons.sc.edu%2Fetd%2F2483&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/316?utm_source=scholarcommons.sc.edu%2Fetd%2F2483&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.sc.edu/etd/2483?utm_source=scholarcommons.sc.edu%2Fetd%2F2483&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dillarda@mailbox.sc.edu


www.manaraa.com

 
 
 
 
 
 
 

Geochemical Source Components in Seafloor Lavas in the Aleutian  
Back-Arc  

 
by 
 

Max T. Siegrist 
 

Bachelor of Science 
Beloit College, 2011 

________________________________ 
 

Submitted in Partial Fulfillment of the Requirements 

For the Degree of Master of Science in  

Geological Sciences 

College of Arts and Sciences 

University of South Carolina 

2013 

Accepted by: 

Gene Yogodzinski, Director of Thesis 

Michael Bizimis, Reader 

Scott White, Reader 

Lacy Ford, Vice Provost and Dean of Graduate Studies 
 
 
 
 
 
 
 



www.manaraa.com

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by Max T. Siegrist, 2013 

All Rights Reserved. 

ii



www.manaraa.com

Abstract 

 Whole-rock compositions of seafloor lavas are used to constrain the processes and 

source characteristics contributing to the formation of geochemically distinctive, 

primitive magma types located in the Aleutian back-arc.  Samples were dredged 

primarily from small volcanic cones on the seafloor, located between the emergent 

volcanoes and in the back-arc up to 60 km from the volcanic front.  Compositions vary 

from basalt to dacite, with 48-70 % SiO2 and 4-13 % MgO.  Nearly 30% of the samples 

are primitive, with Mg/Mg+Fe >0.60.  Most primitive samples are basalts, which fall into 

two groups, based on minor and trace element abundances.  Low/med-K basalts are 

similar to primitive basalts throughout the arc with <1 % K2O and <0.2 % P2O5.  Most of 

these contain <500 ppm Sr, <14 ppm Rb, 4-7 ppm La, and La/Yb=3-5.  Medium/high-K 

basalts have higher K2O and P2O5 as well as higher abundances of most incompatible 

trace elements except Pb (<6 ppm for all primitive basalts).  Enrichments are somewhat 

stronger in the large ion lithophile elements compared to less strongly incompatible 

elements, resulting in more fractionated trace element patterns in med/high-K basalts 

(La/Yb=5-10 and Sr/Y=21-39), but without an affect from residual garnet (normalized 

Dy/Yb=1-2).  Strontium and Pb isotopes are generally less radiogenic in med/high-K 

basalts (87Sr/86Sr=0.7028-0.7031, 207Pb/204Pb=15.49-15.55) compared to low/med-K 

basalts (87Sr/86Sr=0.7030-0.7035, 207Pb/204Pb=15.53-15.59).  The pattern is one of 

generally less radiogenic Pb and Sr in samples that are more strongly enriched in 

incompatible elements relative to Pb (K/Pb, Ce/Pb, Hf/Pb).  Medium/high-K basalts with 

iii



www.manaraa.com

the least radiogenic Sr and Pb have incompatible trace element ratios that approach those 

of ocean ridge basalts (Ce/Pb=12, Zr/Sm=28, La/Ta=17).  The broad isotopic pattern of 

all Aleutian lavas, and the unradiogenic Sr in med/high-K basalts appear inconsistent 

with the involvement of an enriched mantle component in the Aleutian back-arc.  Paired 

isotope-incompatible element systematics suggest a stronger influence from depleted 

mantle in the source that produced the med/high-K basalts.  Mixing relationships based 

on 207Pb/204Pb and Ce/Pb indicate a reduced role for subducted sediment, and an 

increased role for depleted mantle in the source.  Higher abundances of K2O and other 

incompatible elements in med/high-K basalts appear to require a separate explanation.  

One possibility is that med/high-K basalts are also produced by significantly lower 

degrees of partial melting in the mantle, compared to low/med-K basalts. 
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Chapter 1 

Introduction, Sample Locations, Analytical Methods and Results 

1.1 Introduction 

Many geochemical studies have concluded that the source of island arc magmas is 

a mixture of components derived from the sub-arc mantle wedge, subducted sediment 

and subducted oceanic crust (e.g., Elliott et al., 1997; Hawkesworth et al., 1993; Kay, 

1980; Plank and Langmuir, 1993).  The nature of these geochemical source components 

and their role in the formation of subduction magmas, provide an important source of 

information about the physical conditions present in subduction zones, and about the role 

of subduction in the evolution of the crust-mantle system. 

 The Aleutian arc is an ideal setting to investigate geochemical source components 

because the subduction rate and volume of sediment entering the trench changes along 

the arc, while the composition and thickness of the arc crust as well as the age of the 

subducting Pacific plate (50-60 Ma) are effectively constant.  Kelemen et al. (2003) 

emphasized these points and the importance of along-arc changes in subduction rate and 

sediment flux to the trench, which they argue changes the physical conditions present 

during magma genesis.  They interpreted east-to-west changes in isotopic compositions 

of Aleutian lavas to reflect a westward decrease in sediment flux to the trench and 

ultimately to the source of magmas beneath the arc (Kelemen et al., 2003; Yogodzinski et 

al., 2010; Yogodzinski et al., 1994). Kelemen et al. (2003) noted that oblique 

convergence results in a lower rate of subduction in the west, increases conductive 

1



www.manaraa.com

cooling of the sub-arc mantle wedge and at the same time increases heating of the 

subducting plate.  Based on these changing physical conditions of subduction, and related 

east-to-west changes in the compositions of Aleutians lavas, they suggest that subducted 

basalt plays a stronger role in the source of western Aleutian lavas, because the sub-arc 

mantle there is expected to be relatively cool, resulting in less contribution from the 

mantle, compared to the central and eastern parts of the arc. 

 In this study I present a survey of whole-rock major and trace element 

compositions, combined with analysis of Sr, Pb, Nd, and Hf isotopes for central and 

eastern Aleutian seafloor lavas collected by dredging during the 2005 Western Aleutian 

Volcano Expedition (the WAVE cruise).  The focus of this study is on the compositions 

of seafloor lavas collected between the emergent volcanoes and in back-arc locations up 

to 60 km from the volcanic front.  Almost 30% of lavas from these areas are primitive, 

with Mg/Mg+Fe >0.60.  These primitive samples, which are mostly basalts, provide an 

outstanding opportunity to evaluate for the first time, cross-arc changes in the source 

mixture and related processes controlling the compositions of magmas produced in the 

Aleutian back-arc.  An important conclusion of this work is that primitive, back-arc 

basalts with elevated abundances of K and most incompatible trace elements are 

produced from a source mixture in which the role of the subducted basalt and sediment is 

diminished, while that of the sub-arc mantle is enhanced.  Isotopic shifts toward 

unradiogenic Pb in K-enriched back-arc basalts, is consistent with a depleted composition 

for the Aleutian mantle wedge, and appears to rule out a mantle component beneath the 

arc similar to nearby plume components. 
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1.2 Sample Locations 

Samples included in this study were taken in 33 dredges collected in locations 

along more than 1000 km of arc length, from the Kiska Island area in the west to near 

northern Umnak Island in the east (Fig. 1.1).  Dredge targets were primarily volcanic 

cones and bedrock promontories, located between and behind the much larger emergent 

volcanoes that define the volcanic front.  Many of the cones have smooth and 

symmetrical shapes, and are clearly the products of constructional volcanic processes 

(Fig. 1.2a).  Others are irregularly shaped and appear to have been subject to significant 

erosion (Fig. 1.3b).  Some of the eroded cones are broad and flat-topped, indicating a 

history of emergence and erosion to wave base during times of lower sea level (Fig. 

1.4c).  Several dredges sampled irregularly shaped knobs and bedrock promontories, 

which we interpret to be eroded and partially buried cones (Fig. 1.5a).  One dredge was 

collected from the submerged flank of the emergent Koniuji volcano. 

The smallest cones have base diameters of 0.6-2.1 kilometers and are 120-340 

meters high (Fig. 1.2g).  The larger cones are 1.4-4.6 kilometers wide at their base and 

380-955 meters high (Fig. 1.2f).  The largest cones approach the size of small emergent 

volcanoes such as those in the Islands of Four Mountains (Fig. 1.4), which have base 

diameters of 4.8-10.5 km and are 888-1,730 meters high.   

Many of the dredges are located close to the volcanic front, which we define by 

straight lines connecting the summits of emergent volcanoes.  Dredges in the back-arc are 

up to 41 km orthogonal distance from the volcanic front, or 60 km from the volcanic 

front, measured along the direction of Pacific-North America convergence.  These 

locations are 140-206 km orthogonal distances from the plate boundary or 152-309 km 
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Fig. 1.1. Map illustrating geographical and other features mentioned in this paper.  Yellow triangles mark the locations of emergent 
Aleutian volcanoes.  Blue circles represent locations of dredged features analyzed in this study, which were collected during the 
WAVE cruise.  Grey circles mark the locations of dredged features on the western Aleutian seafloor.  Black arrows indicate the 
direction of Pacific-North American convergence along the plate boundary at the Aleutian trench.  
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Figure 1.2. Map of the Semisopochnoi, Little Sitkin, and Kiska dredge area with maps 
illustrating features dredged on the seafloor.  Blue circles on the area map indicate 
locations of dredged features and red extent rectangles correspond to smaller scale maps 
of dredged features.  White arrows on smaller scale maps mark dredge locations and 
point in the dredge direction.  The contour interval is 50 meters for maps b, d and f and 
20 meters for maps a, c, e and g.  Dredges tn182_35, tn182_37 and tn182_42 sampled 
symmetrical cones similar to tn182_36 and tn182_43, illustrated in maps d and g 
respectively.
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Figure 1.3. Map of the Seguam dredge area with maps illustrating features dredged on 
the seafloor.  Symbols are as in Fig. 1.2.  The contour interval is 50 meters for maps a-f.
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Figure 1.4. Map of the Umnak and Island of Four Mountains dredge area with maps 
illustrating features dredged on the seafloor.  Symbols are as in Fig. 1.2.  The contour 
interval for maps a-d is 50 meters.
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Figure 1.5. Map of the Bobrof, Tanaga and Gareloi dredge area with maps illustrating 
features dredged on the seafloor.  Symbols are as in Fig. 1.2.  The contour interval is 50 
meters for maps a-c.
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measured from the plate boundary along the direction of Pacific-North America 

convergence.     

Samples included in the study appear fresh in hand sample and were free of 

significant Mn-oxide or other mineral coatings or significant signs of alteration or 

weathering.  Samples dredged from bedrock promontories located more than 

approximately 10 km south of the volcanic front in the Amchitka, Semisopochnoi and 

Gareloi survey areas (Fig. 1.1), were excluded from this study because their ages are 

uncertain (they could be several million years old) and because they probably formed at a 

time when the Aleutian volcanic front was located well south of its present location.  

Radiometric dating indicates that samples dredged from deep bedrock structures, such as 

submarine canyons, are Eocene to early Miocene in age, (Jicha et al., 2005).  These 

samples, which were produced during an early phase of Aleutian arc growth, show 

significant signs of alteration and weathering, and have also been excluded from this 

study.   

1.3 Analytical Methods 

Rock samples were broken to 16-18 g of coarse fragments with a hammer, and 

reduced to 2-3 mm-size chips with a jaw crusher.  The rock chips were then rinsed with 

distilled water and dried.  The dried chips were ground to a powder in an agate container 

for 30 minutes, using a Fritsch planetary ball mill.  

Preparation of whole-rock samples for x-ray fluorescence (XRF) analysis was 

done at the University of South Carolina following the procedures of Johnson et al. 

(1999). Glass disks were made from a mixture of 3.5 g of rock powder and 7 g of Li-

tetraborate flux. The rock-flux mixtures were fused in graphite crucibles at 1050° C for 
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10 minutes and quenched in graphite molds. The samples were then re-ground in a 

RockLabs bench top ring mill in a tungsten-carbide container. The resultant powders 

were then fused and quenched in graphite for a second time. One surface of each glass 

disk was then flattened on a diamond lap.  Final finishing of the flattened surface and 

analysis by XRF were done at the Washington State Geoanalytical Lab in Pullman, WA. 

The XRF data are reported on an anhydrous basis with major element totals recalculated 

to 100%. 

Digestion of samples for whole-rock trace element analysis by ICPMS was 

adapted from the hydrothermal decomposition method of Krogh (1973).  Approximately 

40 mg of rock powder was weighed into 3 mL teflon capsules.  The capsules, with their 

lids placed loosely on them, were then positioned in teflon inserts of steel digestion 

bombs (Parr #4745) containing 4-5 mL of a 3:1 mixture of HF:HNO3.  The steel bombs 

were then assembled and placed in the oven at 150° C for 4-5 days.  After removing the 

bombs from the oven, the digested samples were transferred to 15 mL teflon capsules 

using 4-6 mL of 15N HNO3.  The samples were then placed on a hotplate at 

approximately 90° C and evaporated to insipient dryness.  Dissolution in 4-6 mL of 15N 

HNO3 and evaporation to incipient dryness was repeated twice more.  Samples were then 

heated gently overnight in 6 mL of a 4:1 mixture of 18 MΩ H2O and 15N HNO3. Most 

solutions are clear and free of precipitates after this step.  Additional dissolution/drying 

steps in 15N HNO3 were necessary to produce clear solutions for only a small number of 

samples.   

Solutions produced by the digestion method described above were transferred to 

HDPE bottles and diluted 2000 times the initial powder weight with de-ionized water 
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containing 25 ppb In and 1% HNO3 by volume.  The final result was an 80 mL solution 

with 2.5% HNO3 containing 500 ppm of dissolved rock and 25 ppb of In, which is used 

as an internal standard.   

Abundances of 26 trace elements were measured at the University of South 

Carolina on a Varian 820-MS quadrupole ICP-MS.  Blank solutions were measured at the 

beginning and end of each analytical run.  Unknown solutions were bracketed by the 

AGV-1 reference standard, which was analyzed after every five unknown samples 

throughout each run.  Indium-normalized and blank-corrected count rates for unknowns 

were quantified against the AGV-1 standard, using reference values from Kelley et al. 

(2003) and from the online GeoRem database.  Additional USGS rock standards were run 

periodically to evaluate precision and accuracy. 

For Nd and Sr isotopes, approximately 100 mg of rock powder was leached with 

6 N HCl in a sealed, teflon capsule at ~120° C for one hour.  The resulting leachate was 

decanted and samples were rinsed three times with 18 MΩ H2O.  The leached samples 

were then digested in 4 mL of an HF:HNO3 mixture (3:1).  Precipitates were removed 

from the solutions using the steps described above for trace element sample digestion.  

Samples were then dissolved in 2.5 N HCl and centrifuged for 10 minutes at 40,000 rpm.  

The centrifuged samples were loaded onto a ~5 mL bed of cation-exchange resin (200-

400 µm Eichrom 50W-X8) in teflon columns.  Light rare-earth element and Sr fractions 

were separated from the rock matrix with elutions in 6 N and 2.5 N HCl respectfully.  

Strontium fractions were dried, dissolved in 0.001 N HNO3 and loaded on an Eichrom 

SR-B50-S resin in teflon micro-columns.  The samples were rinsed with 3.5 N HNO3 and 

separated from the resin with 0.001 N HNO3.  Light rare-earth element fractions were also 
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dried and dissolved in 0.25 N HCl.  These were loaded on Eichrom LN-B25-S resin in 

teflon micro-columns.  Neodymium fractions were separated from other light rare-earth 

elements with 0.25 N HCl. 

For Pb isotopes, hand-picked rock chips were rinsed in de-ionized water, 

sonicated and dried.  The cleaned chips were then leached with 6 N HCl in a sealed, 

teflon capsule at ~120° C for one hour.  The resulting leachate was decanted and the 

samples were rinsed three times with 18 MΩ H2O.  The leached rock chips were then 

digested in ~6 mL of an HF:HNO3 mixture (3:1) on a hotplate at ~90° C for 24 hours.  

The digested samples were then dissolved in ~1 mL of 2 N HBr and evaporated to 

dryness at ~90°C on a hotplate.  This step was repeated twice more.  The samples were 

then placed on BioRad AG-1 X8 anion-exchange resin in teflon micro-columns.  The Pb 

fraction was removed from the rock matrix by the addition of two separate mixtures of 

2.5 N HNO3 and 2 N HBr to the column (2:1 and 2:0.15).  The eluted Pb fractions were 

passed through the columns a second time using the same steps for additional cleaning. 

Isotope ratios were measured on the Thermo Fisher Neptune in the Center for 

Elemental Mass Spectrometry at the University of South Carolina. The Sr and Nd results 

were normalized to 86Sr/88Sr=0.1194 and 146Nd/144Nd=0.7219, assuming exponential 

fractionation behavior.  Seventeen measurements of the SRM987 Sr isotope standard 

returned an average of 0.710254 for 87Sr/86Sr  (2σ= 0.000030).  Results are corrected 

against a value for 87Sr/86Sr in SRM981 of 0.10248.  Four measurements of the Jndi Nd 

isotope standard returned an average of 0.512096 for 143Nd/144Nd  (2σ= 0.000015).  Three 

measurements of the La Jolla Nd isotope standard returned an average of 0.511840 for 

143Nd/144Nd  (2σ= 0.000011).  Results were corrected against a reference value of 
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0.512115 for Jndi.  Lead isotope samples were spiked with thallium to monitor in-run 

mass fractionation of Pb isotopes (White et al., 2000).  Thirteen analyses of the NBS981 

standard measured by this method produced values for 206Pb/204Pb=16.921, 

207Pb/204Pb=15.470, and 208Pb/204Pb=36.630.  Results for Pb isotopes were corrected 

against accepted values for NBS981 from Todt et al. (1996 - 206Pb/204Pb=16.936, 

207Pb/204Pb=15.489, and 208Pb/204Pb=36.701).   

1.4 Results 

The 159 samples of central and eastern Aleutian seafloor lavas analyzed for this 

study span a wide range of major element compositions, from basalt to dacite, with 48-70 

% SiO2 (Fig. 1.6).  Most samples are basalts (88), with a smaller number of basaltic-

andesites (22), andesites (37) and only a few dacites (12).  The seafloor lavas fall 

primarily in the medium-K field (Fig. 1.6C), which is typical for Aleutian and other 

island-arc volcanic rocks worldwide (Gill, 1981).  The Aleutian seafloor lavas also span a 

wide range FeO*-MgO-SiO2 compositions and so display both tholeiitic and calc-alkaline 

igneous series characteristics (Fig. 1.6G). 

A significant number of the seafloor lavas are primitive basalts which contain 

more than 8 % MgO and have molar Mg/Mg+Fe greater than 0.60 (Mg#>0.60 – Fig. 

1.6D).  Many of these samples have medium–low K2O contents (0.5-1.0 %, Fig. 1.6C-D), 

which are typical for primitive and least-evolved Aleutian basalts (Gust and Perfit, 1987; 

Kay and Kay, 1994; Nye and Reid, 1986).  The seafloor lavas include a second group of 

basalts that are similarly primitive (8-11 % MgO, Mg#>0.60) but contain higher K2O 

(1.0-1.3 %).  These higher-K basalts, which fall around the med/high-K boundary line in 

Fig. 1.6C, also have higher TiO2 (1.0-1.6 %, Fig. 1.6A-B) and P2O5 (0.23-0.45 %, Fig. 
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Figure 1.6. Harker and Fenner diagrams of TiO2, K2O, and P2O5 as well as a FeO*/
MgO Harker diagram of central and eastern Aleutian seafloor lavas plotted with other 
Aleutian lavas (grey circles).  Other symbols are as indicated in the legend.  Black 
lines on the K2O Harker diagram represent the boundaries of the low, medium, and 
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(1974). 
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1.6E-F) compared to the low/med-K basalts (TiO2=0.67-1.1 %, P2O5=0.10-0.20 %), 

which again, are more typical of primitive basalts throughout the Aleutians (Fig. 1.6). 

Incompatible trace elements are also clearly different in the low/med-K and 

med/high-K basalt types.  This is illustrated in Fig. 1.7A which shows that the med/high-

K basalts have generally higher abundances for all rare-earth elements (REEs).  In this 

way these basalts appear similar to basalts and andesites from Amak and Bogoslof, which 

are the two large, emergent volcanoes that lie well behind the Aleutian volcanic front 

(Fig. 1.7B).  Figure 1.8 shows that except for Pb, the med/high-K basalts have generally 

higher abundances of all incompatible elements.  The med/high-K basalts are also more 

strongly enriched in the light REEs (higher La/Yb) but have ratios of middle to heavy 

REEs (Dy/Yb) similar to those of the low/med-K basalts (Fig. 1.7A, 1.8).  Abundances of 

the middle and heavy REEs (Dy to Y on Fig. 1.8) in all of the primitive seafloor basalts 

discussed here are below those of MORB (Fig. 1.8).  Finally, it is evident that although 

the med/high-K basalts are relatively Ti-rich, the depletion of Ta-Nb and Hf-Zr relative to 

similarly incompatible REEs persists, even for basalts with >1.5 % TiO2 and 14-15 ppm 

Nb (Fig. 1.8). 

Petrographic observations also illustrate some differences in the primitive basalt 

groups.  Olivine up to 2-3 mm in long dimension is the only phenocryst phase present in 

three med/high-K basalt samples studied (dredges 35-37 – Fig. 1.9).  These samples also 

have similar groundmass texture/mineralogy where they are vesicular and contain 

olivine, plagioclase, opaques and glass.  Observations of thin sections for six of the 

low/med-K primitive basalts illustrate a range of phenocryst types, from olivine only 

(dredge 84), to olivine and plagioclase (dredge 43), to olivine and clinopyroxene (dredge 
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Figure 1.7. Chondrite-normalized rare-earth element abundances 
for primitive (MgO>8 % and Mg#’s>0.60) seafloor basalts (A) and 
lavas from Amak and Bogoslof (B).  Amber squares are low/med-
K primitive basalts with K2O<1.0 % and green squares are med/
high-K primitive basalts with K2O>1.0 %.  Amak and Bogoslof are 
two emergent volcanoes in the Aleutian back-arc and are 
represented by white squares.  Normalizing values are from 
McDonough and Sun (1995). 
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Figure 1.9. Photomicrographs of high MgO basalts showing different phenocryst 
assemblages; olivine, olivine and plagioclase, and olivine, plagioclase, and 
clinopyroxene.  Scale bar in each photomicrograph is one millimeter. 
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77), to dominantly olivine with sparse microphenocrysts of clinopyroxene and small 

plagioclase-pyroxene glomerocrysts (dredge 69), and to olivine, plagioclase and 

clinopyroxene (dredges 67 and 75). 

The seafloor basaltic andesites have Mg#s mostly <0.60 and fall primarily in the 

tholeiitic field, whereas the andesites have on average, similar or higher Mg#s, and so fall 

predominantly in the calc-alkaline field (Fig. 1.6G).  Abundances of TiO2, P2O5, K2O and 

other major elements in most of the basaltic andesites and andesites are typical of those in 

Aleutian lavas at intermediate silica (Fig. 1.6, 1.10).  Basaltic andesite REE patterns are 

similar to those in the low/med-K basalts, but at somewhat higher average abundances 

(Fig. 1.11). Some basaltic andesites have more fractionated REEs (higher La/Yb) and so 

appear more similar to the med/high-K basalts (compare Figs. 1.11A and 1.7A).  Most of 

the andesites have elevated REE abundances, similar to the basaltic andesites, but with 

more pronounced negative Eu anomalies (Fig. 1.11B).  Some andesites also have more 

fractionated REE patterns (higher La/Yb) resulting from relatively low abundances of 

middle and heavy REEs, similar to those in the low/med-K basalts (Fig. 1.11B).   

Several of the basaltic andesites and andesites have unusually high Sr compared 

to average Aleutian lavas at intermediate silica (>700 ppm, Fig. 1.12A).  Some of these 

have distinctive trace element patterns, with high light REEs (La>50X chondrites), low Y 

and heavy REEs (<7X chondritic – Fig. 1.11C) and strong fractionation between the 

middle and light REEs (high Dy/Yb).  These high-Sr andesites also have elevated Ta and 

Nb, which result in low La/Ta and La/Nb ratios similar to those of MORB (Fig. 1.13).  

Abundances of Hf and Zr in the high-Sr andesites are also relatively high, especially 

compared to Sm (Fig. 1.13). 
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Figure 1.11.  Chondrite-normalized rare-earth element  
abundances for seafloor basaltic andesites, andesites 
and dacites.  Amber squares are as in Fig. 1.7.  Other 
symbols in 1.11A and 1.11B are as in Fig. 1.6.  Teal 
circles and triangles in 1.11C represent high-Sr (>700 
ppm) basaltic andesites and andesite, respectfully.  
Normalizing values are from McDonough and Sun 
(1995). 
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Figure 1.12. Harker diagrams of key incompatible trace element abundances and 
incompatible trace element ratios. Teal circles and triangles are high-Sr lavas 
and other symbols are as in Fig. 1.6. 
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The few dacites present among the seafloor lavas have highly variable 

compositions.  Dacites dredged from near Seguam Island (dredge #72) are evolved, with 

FeO*/MgO >4 and Mg#<0.30 (Fig. 1.6G).  These samples have approximately 2 % K2O 

and so fall in the center of the medium-K field at 70 % SiO2 (Fig. 1.6C).  Dacites dredged 

from an eroded cone near the Islands of Four Mountains (dredge #81) have more than 3.5 

% K2O.  These rocks fall in the high-K field and are among the most potassic volcanic 

rocks in the arc (Fig. 1.6C).  In contrast, dacites dredged from seafloor cones near Little 

Sitkin (dredges #33, #42) fall within or near the low-K field at 63-65 % SiO2 (0.80-1.1 % 

K2O).  Both of these dacites fall in the calc-alkaline field, but one is highly calc-alkaline, 

with FeO/MgO<1 and Mg#=0.65 (Fig. 1.6G).  Complete trace element data are available 

only for the dacites dredged near Seguam Island, mentioned above.  Rare-earth elements 

for these are relatively flat, with high abundances for all REEs and well-defined negative 

Eu anomalies (Fig. 1.11B).  These samples closely resemble dacitic lavas erupted on 

Seguam Island and studied by Singer et al. (1992).   

Isotopic compositions for the seafloor lavas span nearly the full range of 

compositions observed in the Aleutians for the Pb, Sr, Nd and Hf systems.  This 

variability is well expressed in the Nd-Sr isotope correlation diagram (Fig. 1.14A), in Pb-

Pb isotope plots (Fig. 1.15A), and in plots of Sr versus Pb isotope (Fig. 1.15B).  Few 

analyses are available for the Hf system, but there too, the seafloor lavas span most of the 

total range of compositions see in Aleutian lavas (Fig. 1.14B). 

Most of the samples for which isotopic data are available are basalts, including 

several of both the low/med-K and the med/high-K primitive basalt types.  It is evident 

that the med/high-K basalts have generally less radiogenic Pb and Sr than do the 
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Figure 1.14. Neodymium-Sr (A) and Hf-Nd 
(B) isotope plots.  Symbols are as in Fig. 1.6 
with the addition of red symbols as Attu and 
Komandorsky depleted tholeiites, green 
circles as Aleutian sediments from DSDP site 
183, black dots as Pacific MORB and orange 
diamonds as northeast Pacific seamount, 
Pribilof and DSDP 183 and 178 basalts.  
Dashed lines in B are after Vervoort and 
Blichert-Toft (1999). The center dashed line 
represents the Hf-Nd isotope mantle array and 
the other two dashed lines are ± 4 εHf units.
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Figure 1.15. Lead isotope plot (A) and Pb-Sr isotope plot 
(B).  Symbols are as in Fig. 1.14.  Dashed line in 1.15A 
is the Northern Hemisphere Reference Line (NHRL).  
The inset in 1.15B is of primitive seafloor basalts only. 
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low/med-K primitive basalt types (Fig. 1.15B).  These differences are evident for samples 

collected from widely separated locations, including both the western part of the study 

area near Little Sitkin and the eastern part of the study area near Seguam Island.   

Along-arc changes in the isotopic compositions of Aleutian lavas have been well 

documented and are interpreted to reflect decreasing contributions of subducted marine 

sediment to the source of Aleutian lavas from east to west along the arc (Kelemen et al., 

2003; Yogodzinski et al., 2010).  These changes are also evident in seafloor lavas 

collected in locations spanning much of the eastern and central Aleutian arc length, from 

approximately 168°W to 178°E longitude (Fig. 1.1).  Shifts toward MORB-like 

compositions in more westerly locations (reflecting less sediment in the source) are 

particularly clear for Pb and Sr isotopes (Fig. 1.16A, G).  It also appears that at a given 

location in the arc, the seafloor lavas have on average, less radiogenic Pb and Sr, and 

more radiogenic Nd and Hf (Fig. 1.16A-D). 

The isotopic compositions of three andesitic samples collected from locations in 

the eastern part of the study area near the Islands of Four Mountains (dredge #78, 83 and 

85) are similar to those in the low/med-K basalt group, which are typical of lavas from 

easterly locations in the arc, with relatively radiogenic Pb and Sr, and relatively 

unradiogenic Nd and Hf (Fig. 1.16). 
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Chapter 2 

Discussion and Conclusions 

2.1 Overview of Central and Eastern Aleutian Seafloor Lavas 

There are a relatively large number of primitive, high-Mg# compositions among 

the seafloor lavas (~30%).  This is a high proportion of primitive lava compositions 

compared to sample sets from most Aleutian volcanoes.  The distinctively primitive 

nature of the seafloor sample set is made clear by comparison with Little Sitkin and 

Korovin (two emergent volcanoes located in similar parts of the arc as the primitive 

seafloor lavas) where 153 samples include only two with Mg#s>0.60.  Most primitive 

seafloor lavas are basalts, but a few have intermediate compositions with up to 64 % 

SiO2.  

Interestingly, all of the primitive seafloor lavas were dredged from volcanic 

features located at distances greater than approximately 18 km from the nearest large, 

emergent volcanic centers (Fig. 2.1).  These lavas are likely to have experienced 

relatively little cooling and fractionation while ascending to the surface.  This may be 

because the primitive seafloor lavas did not pass through the network of conduits and 

magma storage areas that underlie the major centers.  These observations are consistent 

with the idea that small volume eruptions formed off the main volcanic axis may more 

accurately sample the geochemical heterogeneity that is present at depth (e.g., Lundstrom 

et al., 1999).  The absence of primitive lavas from locations closer to the major centers 

could also indicate that the network of conduits and magma storage areas that underlie 
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the major centers may have an effective footprint of 15-20 km.  This would imply that 

magma storage areas beneath the major centers extend to at least this depth within the 

crust, and perhaps all the way to the crust-mantle boundary (e.g., Dahren et al., 2012). 

 Most of the evolved seafloor lavas in our data set are probably related to primitive 

seafloor basalts by fractional crystallization and mixing processes. These evolved lavas 

commonly have REE patterns parallel to primitive seafloor basalts but at higher REE 

abundances (Fig. 1.11).  Evolved seafloor lavas with relatively steep REE patterns and 

higher K2O concentrations (Fig. 1.11) may be related to med/high-K basalts by fractional 

crystallization.  Many of the evolved seafloor andesites have REE patterns with 

suppressed middle REE abundances compared heavy REEs (low Dy/Yb; Fig. 1.11B).  

Romick et al. (1992) and Davidson et al. (2007) show that these trace element 

characteristics are common in arc andesites and dacites, and they argue that it is produced 

primarily by a fractionating mineral assemblage that includes amphibole.  Observations 

of hand specimens confirm that amphibole is a prominent phenocryst mineral in all of the 

seafloor andesites that have relatively low middle and heavy REE abundances, and 

relatively low Dy/Yb.  

 High-Sr lavas with strongly fractionated REE patterns (Fig. 1.11C) are unlikely to 

be related to primitive basalts by fractional crystallization and mixing processes.  The 

very steep REE patterns of these lavas indicate a significant role for garnet in their 

formation.  The high-Sr lavas with strongly fractionated REE patterns are depleted in Yb 

compared to Dy, similar to dacites among the western Aleutian seafloor lavas.  These are 

the characteristics of the Adak and Komandorsky magnesian andesites (adakites), which 

are isotopically similar to MORB, and are interpreted to have been formed in a multi-
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stage process that includes a significant role for partial melting of subducted oceanic 

crust in the presence of garnet (Kay, 1978; Yogodzinski et al., 1995; Kelemen et al., 

2003).   

The Adak and Komandorsky magnesian andesites have relatively high La and Ce, 

but low Ta and Nb, and so based on La/Ta and La/Nb ratios, are the most Ta-Nb-depleted 

lavas in the Aleutian arc (Yogodzinski et al., 1995).  By comparison, several of the high-

Sr seafloor lavas also have elevated La and Ce, but their Ta and Nb abundances are also 

elevated, so their La/Ta and La/Nb ratios are close to those of MORB.   

It is generally agreed that Ta and Nb depletions reflect a role for residual rutile in 

the source of arc lavas (e.g., Weyer et al., 2003).  Experimental studies by Klemme et al. 

(2002) show that the stability of rutile in the subducting slab is controlled by temperature, 

degree of partial melting and bulk composition of the slab.  In general, the effect of 

increasing temperature in magmatic systems is to increase the solubility of accessory 

minerals such rutile (Klemme et al., 2002; Klimm et al., 2008).  Assuming that residual 

rutile in arc systems is stabilized during partial melting of eclogite, the effect of 

increasing temperature will be to increase the abundance of Nb and Ta in the melt.  This 

is due to the increased solubility of rutile at higher temperatures, which decreases the 

amount of rutile present in the system.  As temperature increases, the concentration of Nb 

and Ta in the melt equilibrated with rutile will also increase, up to the point where rutile 

is eliminated from the residue.  At that temperature, Nb and Ta abundances will be at 

their highest concentrations, and will decrease progressively by dilution if the 

temperature and degree of melting continue to increase (Klemme et al., 2002; Klimm et 

al., 2008).  High-Sr seafloor lavas with La/Ta and La/Nb ratios close to MORB may 
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indicate Nb and Ta were eradicated from the subducting slab in the back arc due to an 

increase in the temperature of the slab causing the solubility of rutile to increase, 

specifically beneath the cones where these lavas were collected.   

2.2 Origin of Med/High-K Back-Arc Basalts 

Geochemical characteristics like those seen in med/high-K Aleutian seafloor basalts 

have been observed in subduction back arc settings worldwide, and present a classic 

problem of subduction-related magma genesis (Barth, 1956; Byers, 1961; Dickinson and 

Hatherton, 1967; Hochstaedter et al., 2001; Hildreth et al., 2004; Stern et al., 2006; 

Tollstrup et al., 2010; Watt, 2013).  Back-arc lavas of this type, which are generally 

recognized by their higher K2O concentrations compared to similarly evolved volcanic 

front lavas, have been broadly attributed to the location on the overriding plate relative to 

the trench or volcanic front, and/or to the depth to the underlying subducting plate.  Barth 

(1956) observed higher K2O in lavas from the Pribilof Islands in the Bering Sea 

compared to lavas of the Aleutian volcanic front.  He suggested that this was due to 

crustal instability and vertical faulting in the vicinity of the Pribilof Islands.  Similarly, 

Byers (1961) considers tension fractures in the Aleutian back arc oriented normal to the 

arc as an explanation for higher K2O concentrations in Bogoslof lavas compared to lavas 

from Umnak Island located on the volcanic front. Arculus et al. (1977) found Sr isotopes 

of Bogoslof lavas to be relatively unradiogenic compared to Umnak lavas, and they 

suggested this was due to parental melts being of mantle origin.  Dickinson and 

Hatherton (1967) were the first to document cross-arc increasing K2O concentrations 

with increasing vertical depth to the Benioff zone as a global phenomenon.  They 

suggested that elevated K2O in back-arc lavas arose at the sites of initial partial melting 
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along the Benioff zone, and emphasized that the melts experienced relatively little change 

in K2O as they rose to the surface.    

 Hildreth et al. (2004) found that back arc lavas from the Katmai reach of the 

Alaska Peninsula have relatively high K2O concentrations, are more enriched in light 

REEs (high La/Yb) and have less radiogenic Sr compared to volcanic front lavas.  They 

interpret the relative enrichment of K2O and light REEs in back arc lavas to result from 

lower degrees of mantle melting compared to volcanic front lavas.  Radiogenic Sr in 

volcanic front lavas is suggested by Hildreth et al. (2004) to be in part caused by higher 

slab flux beneath the volcanic front.  Hildreth et al. (2001) also note that a correlation of 

Sr isotopes with indices of fractionation in volcanic front lavas indicates a significant role 

for crustal contributions and concludes that less radiogenic Sr in rear arc lavas is due to a 

lesser crustal influence. 

 Watt (2013) has also observed higher K2O and relative enrichment of light REEs 

in high MgO melt inclusions hosted in olive in back arc lavas from southern Chile.  He 

too suggests that lower degrees of mantle melting produce the enrichments of these 

elements in the back arc lavas.  Watt (2013) also speculates that addition of a melt 

derived from subducted oceanic crust to the overlying mantle wedge beneath the back 

arc, could also increase K2O and light REE abundances in back arc lavas.  

The Izu-Bonin-Mariana arc (IBM) system, basalts produced in seamount chains 

behind that main volcanic front are less radiogenic in all isotope systems (Sr, Nd, Hf and 

Pb) compared to volcanic front basalts (Tollstrup et al., 2010; Hochstaedter et al., 2001; 

Stern et al., 2006).  This is usually interpreted to reflect heterogeneity in the Indian-type 

mantle wedge (Pb isotopes plot above the NHRL) and the presence of components from 
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subducted Indian-type sediment and Pacific-type altered oceanic crust (Pb isotopes plot 

below the NHRL), which are added to the mantle in different proportions (Tollstrup et 

al., 2010; Hochstaedter et al., 2001).  Stern et al. (2006) argues that IBM back-arc basalts 

have less radiogenic Sr because there is less subducted sediment and altered oceanic crust 

beneath the back arc.  All of these author interpret higher K2O and light REEs in back arc 

basalts as a result of lower degrees of mantle melting compared to volcanic front lavas 

and/or the presence of geochemically enriched Indian-type mantle (Tollstrup et al., 2010; 

Hochstaedter et al., 2001; Stern et al., 2006). 

In Aleutian back arc basalts, we observe enrichments in nearly all incompatible 

elements relative to Pb (Fig. 1.8) coupled to generally less radiogenic Pb and Sr isotopes 

(Fig. 2.2).  This produces clear inverse relationships between Pb isotopes and abundance 

ratios for a variety of trace elements relative to Pb (Fig. 2.2).  These coupled isotope-trace 

element systematics may be explained primarily by a decreased role in the source for 

subducted sediment, which is an abundant source of Pb (12-14 ppm in average Aleutian 

sediment – Vervoort et al., 2011) that is also exceptionally radiogenic 

(207Pb/204Pb~15.626). 

Contributions of the subducted sediment and other source components can be 

modeled based on data patterns in a graph of 207Pb/204Pb versus Ce/Pb (Fig. 2.3).  Miller 

et al. (1994) showed that geochemical source components are located in widely separated 

corners on this plot.  Two components with relatively unradiogenic Pb are separated 

widely based on Ce/Pb, which is relatively high in the MORB or depleted mantle 

component, compared to fluids and/or melts of subducted basalt, which have low Ce/Pb 

(Fig. 2.3).  The component with radiogenic Pb and low Ce/Pb is subducted sediment.  
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Figure 2.2. Lead isotopes versus incompatible elements relative to Pb.  Symbols are as 
in Fig. 1.6. 
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lines are mixing lines between source components.  Symbols are as in Fig. 
1.6 with the addition of green and brown squares with crosshairs for med/
high-K basalt and low/med-K basalt averages, respectively. 
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Because mixing lines on this graph are straight, the location of each data point represents 

a unique combination of the three end-members, which define the vertices of the scalene 

triangle (Fig. 2.3).   

Source contributions were calculated from this three-component system for each 

of the primitive back-arc basalts and for average low/med-K and med/high-K groups.   

End-member compositions for the system are defined by assigning 207Pb/204Pb and Ce/Pb 

compositions that encompass most Aleutian lavas (Fig. 2.3).  Because the end-members 

are widely spaced on the graph, the selection of slightly different end-member 

compositions has relatively little effect on the outcome of the calculation.  The 

calculations indicate that Ce and Pb in the average primitive low/med-K basalt are 

contributed predominantly by subducted sediment (62%), with significantly lower 

contributions for these elements from subducted basalt (29%) and depleted mantle (9%).  

For the average med/high-K primitive basalt, all three components contribute equally to 

the source for Ce and Pb.  This reflects the fact that the average med/high-K primitive 

basalt falls nearly at the center of the triangular region outlined in Fig. 2.3.   

These results are not subject to assumptions about the concentrations of Pb or Ce 

in the end-members.  They reflect only the positions of the data points relative to the 

corners of the triangle.  This means in turn, that the calculations provide no information 

about the abundances of Ce and Pb in lavas.  The results are qualitatively consistent with 

the general pattern of decreasing abundances of K, Ce, Hf and other incompatible 

elements relative to Pb with decreasing 207Pb/204Pb and 87Sr/86Sr (Fig. 2.2), because the 

component that is reduced the most in the med/high-K basalts is the subducted sediment, 

which has high concentrations of Pb (12-14 ppm – Vervoort et al., 2011). Interpretations 
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about the concentrations of these elements in the primitive basalts, will require additional 

modeling with assumptions about the abundances of Ce, Pb and other trace elements in 

the aqueous fluids or hydrous partial melts that were produced when these elements were 

extracted from subducted sediment and basalt (e.g., Kessel et al., 2005).  One thing that 

seems clear is that relatively high abundances of incompatible elements in the med/high-

K basalts will not be explained only by shifting proportions of the source components.  

This is true because the depleted mantle component is expected to be the least fertile 

source of incompatible elements, and because it is the one component that is present in 

significantly higher proportion in the med/high-K basalts (34%) compared to the 

low/med-K basalts (9%).  It therefore seems likely that some other process, perhaps a 

lower degree of mantle melting, has contributed to the higher concentrations of 

incompatible elements in the med/high-K basalts.   

2.3 Characterizing the Aleutian Mantle 

Because the med/high-K back-arc basalts were produced from a source mixture 

with significantly less sediment and more of the mantle component than is typical for 

Aleutian volcanic rocks (Fig. 2.3), they provide an opportunity to better-characterize the 

geochemical nature of the Aleutian mantle wedge, as it exists prior to mixing with 

subducted components.  This is a key issue because if the sub-arc mantle is enriched or 

plume-influenced, or if it is a plumb pudding of enriched and depleted components, then 

melting of the mantle component may produce ocean-island type basalts, which display 

many of the same trace element enrichments as those seen in arc magmas, but without 

any immediate role for subduction-recycling.  This issue has been discussed at length 

(Morris & Hart, 1983; Perfit & Kay, 1986).  The major issues were mostly resolved by 
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10Be studies, which showed that subduction recycling of ocean floor sediment plays a 

significant role in controlling the compositions of most island-arc volcanic rocks (Morris 

et al., 1990; Monoghan et al., 1988; Tera et al., 1986).  However the issue resurfaces, 

especially when there is an effort to calculate elemental budgets for arc magmas or 

recycling rates, which depend heavily on assumptions about mantle contributions during 

magma genesis (Plank, 2005; Singer et al., 2007). 

The broad isotopic patterns for all Aleutian lavas, especially those of med/high-K 

basalts, appear inconsistent with the involvement of an enriched mantle or plume 

component in the Aleutian back-arc.  Aleutian lavas, including one of the med/high-K 

basalts, plot along the center of the mantle array for Hf-Nd isotopes, while apparently 

plume-influenced basalts, including DSDP 183 and 178 basement basalts, and northeast 

Pacific seamounts, all have higher εNd at similar εHf (Fig. 1.14B).  Basalts from the 

Pribilof Islands (Fig. 1.1) also fall in this field and are interpreted to have been formed by 

recent enrichment of the upper mantle beneath the continental margin (Chang et al., 

2009), but an enriched plume source is considered to cause the isotopic compositions of 

northeast Pacific seamounts (Chadwick et al., 2013).  The med/high-K basalts also plot 

inline with the Aleutian array, which trends toward less radiogenic Pb and Sr (Fig. 

1.15B).  Some northeast Pacific seamounts have unradiogenic Sr, but when compared to 

med/high-K basalts, they have more radiogenic Pb at similar Sr isotopic compositions.  In 

207Pb/204Pb-206Pb/204Pb space (Fig. 1.15A), med/high-K basalts again plot along the 

Aleutian array toward unradiogenic values.  Northeast Pacific plume basalts are highly 

variable on this plot, but the likelihood of the involvement of an enriched mantle source 

in the production of med/high-K basalts is low compared to the more simple explanation 
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of a depleted mantle source.  Additional isotopic measurements for Hf will have to be 

made on Aleutian back-arc basalts before the nature of their mantle source can be 

confidently established. 

2.4 Conclusions 

 Mapping and dredging of small volcanic cones located between and behind the 

emergent volcanoes of the Aleutian arc has led to the discovery of primitive med/high-K 

basalts in the Aleutian back-arc.  Lavas with comparable geochemistry have not been 

previously observed in emergent volcanoes of the Aleutian arc.   

 Modeling of source component contributions based on data patterns in 207Pb/204Pb-

Ce/Pb space indicate that there is an increased role for depleted mantle and a decreased 

role for subducted sediment in the source of Aleutian back-arc lavas.  The average 

low/med-K basalt, which is analogous to common Aleutian primitive basalts, obtains Ce 

and Pb predominantly from subducted sediment (62%), with notably lower contributions 

from subducted basalts (29%) and depleted mantle (9%).  In contrast, model calculations 

indicate all three components contribute Ce and Pb equally to the average med/high-K 

basalt. 

 A role for relatively low-degree melting in the creation of the med/high-K basalts 

seems likely but has not been quantified.  Medium/high-K basalts are produced with 

relatively greater contributions from the depleted mantle and have higher abundances of 

incompatible elements, however, the depleted mantle is the least fertile source of 

incompatible elements.  Modeling of low-degree melting to produce med/high-K basalts 

may resolve this issue.   
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 Isotopic shifts in the med/high-K basalts indicate that the Aleutian sub-arc mantle 

is depleted (MORB-like), not enriched.  Medium/high-K basalts plot along the Aleutian 

array on Pb, Sr, Nd and Hf isotope variation diagrams, which trends toward unradiogenic 

Pb and Sr and radiogenic Nd and Hf.  The Aleutian array plots along the mantle array in 

Hf-Nd isotope space. Analyzing Hf isotopes for the remaining med/high-K basalts will 

likely strengthen this argument. 
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